
pex
Version

2.3

1

5

5

5

6

6

6

7

8

11

12

13

14

15

15

15

15

15

16

16

17

18

18

19

19

Table of Contents

What are .pex files?

• tl;dr

• Why .pex files?

• How do .pex files work?

Building .pex files

Invoking the pex utility

• Specifying requirements

• Specifying entry points

• Saving .pex files

• Tailoring requirement resolution

• Tailoring PEX execution at build time

• Tailoring PEX execution at runtime

Using bdist_pex

• bdist_pex

• bdist_pex --bdist-all

Using Pants

PEX Recipes and Notes

• Uvicorn and other customizable application servers

• Long running PEX applications and daemons

• PEX app in a container

• PEX-aware application

• Gunicorn and PEX

• PEX and Proxy settings

PEX runtime environment variables

2

file:///home/runner/work/pex/pex/dist/docs/pdf/index.html

pex

This project is the home of the .pex file, and the pex tool which can create them. pex also

provides a general purpose Python environment-virtualization solution similar to virtualenv . pex

is short for “Python Executable”

3

http://virtualenv.org

in brief

To quickly get started building .pex files, go straight to Building .pex files . New to python

packaging? Check out packaging.python.org .

4 in brief

https://packaging.python.org

intro & history

pex contains the Python packaging and distribution libraries originally available through the

twitter commons but since split out into a separate project. The most notable components of pex

are the .pex (Python EXecutable) format and the associated pex tool which provide a general

purpose Python environment virtualization solution similar in spirit to virtualenv . PEX files have

been used by Twitter to deploy Python applications to production since 2011.

To learn more about what the .pex format is and why it could be useful for you, see What are .pex

files? For the impatient, there is also a (slightly outdated) lightning talk published by Twitter

University: WTF is PEX? . To go straight to building pex files, see Building .pex files .

Guide:

What are .pex files?

tl;dr

PEX files are self-contained executable Python virtual environments. More specifically, they are

carefully constructed zip files with a #!/usr/bin/env python and special __main__.py that

allows you to interact with the PEX runtime. For more information about zip applications, see PEP

441 .

To get started building your first pex files, go straight to Building .pex files .

Why .pex files?

Files with the .pex extension – “PEX files” or “.pex files” – are self-contained executable Python

virtual environments. PEX files make it easy to deploy Python applications: the deployment

process becomes simply scp .

Single PEX files can support multiple platforms and python interpreters, making them an

attractive option to distribute applications such as command line tools. For example, this feature

allows the convenient use of the same PEX file on both OS X laptops and production Linux AMIs.

5 intro & history

https://github.com/twitter/commons
http://virtualenv.org
http://www.youtube.com/watch?v=NmpnGhRwsu0
https://peps.python.org/pep-0441/
https://peps.python.org/pep-0441/

How do .pex files work?

PEX files rely on a feature in the Python importer that considers the presence of a __main__.py

within the module as a signal to treat that module as an executable. For example,

python -m my_module or python my_module will execute my_module/__main__.py if it exists.

Because of the flexibility of the Python import subsystem, python -m my_module works regardless

if my_module is on disk or within a zip file. Adding #!/usr/bin/env python to the top of a .zip file

containing a __main__.py and marking it executable will turn it into an executable Python

program. pex takes advantage of this feature in order to build executable .pex files. This is

described more thoroughly in PEP 441 .

Building .pex files

You can build .pex files using the pex utility, which is made available when you

pip install pex . Do this within a virtualenv, then you can use pex to bootstrap itself:

$ pex pex requests -c pex -o ~/bin/pex

This command creates a pex file containing pex and requests, using the console script named

“pex”, saving it in ~/bin/pex. At this point, assuming ~/bin is on your $PATH, then you can use pex

in or outside of any virtualenv.

The second easiest way to build .pex files is using the bdist_pex setuptools command which is

available if you pip install pex . For example, to clone and build pip from source:

$ git clone https://github.com/pypa/pip && cd pip
$ python setup.py bdist_pex
running bdist_pex
Writing pip to dist/pip-7.2.0.dev0.pex

Both are described in more detail below.

Invoking the pex utility

The pex utility has no required arguments and by default will construct an empty environment

and invoke it. When no entry point is specified, “invocation” means starting an interpreter:

6 intro & history

https://peps.python.org/pep-0441/

$ pex
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
Type "help", "copyright", "credits" or "license" for more
information.
(InteractiveConsole)
>>>

This creates an ephemeral environment that only exists for the duration of the pex command

invocation and is garbage collected immediately on exit.

You can tailor which interpreter is used by specifying --python=PATH . PATH can be either the

absolute path of a Python binary or the name of a Python interpreter within the environment, e.g.:

$ pex
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
Type "help", "copyright", "credits" or "license" for more
information.
(InteractiveConsole)
>>> print "This won't work!"
 File "<console>", line 1
 print "This won't work!"
 ^
SyntaxError: Missing parentheses in call to 'print'
>>>
$ pex --python=python2.7
Python 2.7.13 (default, Jul 21 2017, 03:24:34)
[GCC 7.1.1 20170630] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
(InteractiveConsole)
>>> print "This works."
This works.

Specifying requirements

Requirements are specified using the same form as expected by pip and setuptools , e.g.

flask , setuptools==2.1.2 , Django>=1.4,<1.6 . These are specified as arguments to pex and

any number (including 0) may be specified. For example, to start an environment with flask and

psutil>1 :

$ pex flask 'psutil>1'
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux

7 intro & history

Type "help", "copyright", "credits" or "license" for more
information.
(InteractiveConsole)
>>>

You can then import and manipulate modules like you would otherwise:

>>> import flask
>>> import psutil
>>> ...

Conveniently, the output of pip freeze (a list of pinned dependencies) can be passed directly to

pex . This provides a handy way to freeze a virtualenv into a PEX file.

$ pex $(pip freeze) -o my_application.pex

A requirements.txt file may also be used, just as with pip .

$ pex -r requirements.txt -o my_application.pex

Specifying entry points

Entry points define how the environment is executed and may be specified in one of three ways.

pex <options> – script.py
As mentioned above, if no entry points are specified, the default behavior is to emulate an

interpreter. First we create a simple flask application:

$ cat <<EOF > flask_hello_world.py
> from flask import Flask
> app = Flask(__name__)
>
> @app.route('/')
> def hello_world():
> return 'hello world!'
>
> app.run()
> EOF

Then, like an interpreter, if a source file is specified as a parameter to pex, it is invoked:

8 intro & history

$ pex flask -- ./flask_hello_world.py
* Running on http://127.0.0.1:5000/

pex -m
Your code may be within the PEX file or it may be some predetermined entry point within the

standard library. pex -m behaves very similarly to python -m . Consider python -m pydoc :

$ python -m pydoc
pydoc - the Python documentation tool

pydoc.py <name> ...
 Show text documentation on something. <name> may be the name of
a
 Python keyword, topic, function, module, or package, or a dotted
 reference to a class or function within a module or module in a
 ...

This can be emulated using the pex tool using -m pydoc :

$ pex -m pydoc
pydoc - the Python documentation tool

tmpInGItD <name> ...
 Show text documentation on something. <name> may be the name of
a
 Python keyword, topic, function, module, or package, or a dotted
 reference to a class or function within a module or module in a
 ...

Arguments will be passed unescaped following -- on the command line. So in order to get pydoc

help on the flask.app package in Flask:

$ pex flask -m pydoc -- flask.app

Help on module flask.app in flask:

NAME
 flask.app

FILE
 /private/var/folders/rd/_tjz8zts3g14md1kmf38z6w80000gn/T/
tmp3PCy5a/.deps/Flask-0.10.1-py2-none-any.whl/flask/app.py

DESCRIPTION

9 intro & history

 flask.app
    ~~~~~~~~~

and so forth. 

Entry points can also take the form package:target  , such as sphinx:main  or fabric.main:main

for  Sphinx  and  Fabric  respectively.  This  is  roughly  equivalent  to  running  a  script  that  does

import sys, from package import target; sys.exit(target())  . 

This can be a powerful way to invoke Python applications without ever having to  pip install

anything, for example a one-off invocation of Sphinx with the readthedocs theme available: 

$ pex sphinx==1.2.2 sphinx_rtd_theme -e sphinx:main -- --help
Sphinx v1.2.2
Usage: /tmp/tmpydcp6kox [options] sourcedir outdir [filenames...]

General options
^^^^^^^^^^^^^^^
-b <builder>  builder to use; default is html
-a            write all files; default is to only write new and 
changed files
-E            don't use a saved environment, always read all files
...

Although sys.exit is applied blindly to the return value of the target function, this probably does

what you want due to very flexible sys.exit  semantics. Consult your target function and sys.exit 

documentation to be sure. 

Almost certainly better and more stable, you can alternatively specify a console script exported by

the app as explained below. 

pex -c 
If you don’t know the package:target  for the console scripts of your favorite python packages,

pex allows you to use -c  to specify a console script as defined by the distribution. For example,

Fabric provides the fab  tool when pip installed: 

$ pex Fabric -c fab -- --help
Fatal error: Couldn't find any fabfiles!

Remember that -f can be used to specify fabfile path, and use -h for 
help.

Aborting.

Even scripts defined by the “scripts” section of a distribution can be used, e.g. with boto: 

10 intro & history

https://docs.python.org/library/sys.html#sys.exit


$ pex boto -c mturk
usage: mturk [-h] [-P] [--nicknames PATH]

{bal,hit,hits,new,extend,expire,rm,as,approve,reject,unreject,bonus,n
otify,give-qual,revoke-qual}
             ...
mturk: error: too few arguments

Note:  If  you  run  pex -c  and  come  across  an  error  similar  to
pex.pex_builder.InvalidExecutableSpecification: Could not find script 'mainscript.py' in any distribution 

within PEX!  ,

double-check your setup.py and ensure that mainscript.py  is included in your setup’s scripts

array.  If  you  are  using  console_scripts  and  run  into  this  error,  double  check  your

console_scripts  syntax - further information for both  scripts  and  console_scripts  can be

found in the Python packaging documentation . 

Saving .pex files 

Each  of  the  commands  above  have  been  manipulating  ephemeral  PEX  environments  –

environments  that  only  exist  for  the duration of  the pex  command lifetime and immediately

garbage collected. 

If the  -o PATH  option is specified, a PEX file of the environment is saved to disk at  PATH  . For

example we can package a standalone Sphinx as above: 

$ pex sphinx sphinx_rtd_theme -c sphinx -o sphinx.pex

Instead of executing the environment, it is saved to disk: 

$ ls -l sphinx.pex
-rwxr-xr-x  1 wickman  wheel  4988494 Mar 11 17:48 sphinx.pex

This is an executable environment and can be executed as before: 

$ ./sphinx.pex --help
Sphinx v1.2.2
Usage: ./sphinx.pex [options] sourcedir outdir [filenames...]

General options
^^^^^^^^^^^^^^^
-b <builder>  builder to use; default is html
-a            write all files; default is to only write new and 
changed files

11 intro & history

https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html


-E            don't use a saved environment, always read all files
...

As before, entry points are not required, and if not specified the PEX will default to just dropping

into an interpreter. If an alternate interpreter is specified with --python  , e.g. pypy, it will be the

default hashbang in the PEX file: 

$ pex --python=pypy flask -o flask-pypy.pex

The hashbang of the PEX file specifies PyPy: 

$ head -1 flask-pypy.pex
#!/usr/bin/env pypy

and when invoked uses the environment PyPy: 

$ ./flask-pypy.pex
Python 2.7.3 (87aa9de10f9c, Nov 24 2013, 20:57:21)
[PyPy 2.2.1 with GCC 4.2.1 Compatible Apple LLVM 5.0 
(clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more 
information.
(InteractiveConsole)
>>> import flask

To specify an explicit Python shebang line (e.g. from a non-standard location or not on $PATH),

you can use the --python-shebang  option: 

$ dist/pex --python-shebang='/Users/wickman/Python/CPython-3.4.2/bin/
python3.4' -o my.pex
$ head -1 my.pex
#!/Users/wickman/Python/CPython-3.4.2/bin/python3.4

Furthermore, this can be manipulated at runtime using the PEX_PYTHON  environment variable. 

Tailoring requirement resolution 

In general, pex  honors the same options as pip when it comes to resolving packages. Like pip, by

default pex  fetches artifacts from PyPI. This can be disabled with --no-index  . 

If PyPI fetching is disabled, you will need to specify a search repository via -f/--find-links  . This

may be a directory on disk or a remote simple http server. 

12 intro & history



For example, you can delegate artifact fetching and resolution to pip wheel  for whatever reason

– perhaps you’re running a firewalled mirror – but continue to package with pex: 

$ pip wheel -w /tmp/wheelhouse sphinx sphinx_rtd_theme
$ pex -f /tmp/wheelhouse --no-index -e sphinx:main -o sphinx.pex
sphinx sphinx_rtd_theme

Tailoring PEX execution at build time 

There are a few options that can tailor how PEX environments are invoked. These can be found by

running pex --help  . Every flag mentioned here has a corresponding environment variable that

can be used to override the runtime behavior which can be set directly in your environment, or

sourced from a .pexrc  file (checking for ~/.pexrc  first, then for a relative .pexrc  ). 

--zip-safe  / --not-zip-safe
Whether or not to treat the environment as zip-safe. By default PEX files are listed as zip safe. If

--not-zip-safe  is  specified, the source of the PEX will  be written to disk prior to invocation

rather than imported via the zipimporter. NOTE: Distribution zip-safe bits will still be honored even

if  the PEX is marked as zip-safe.  For example,  included .eggs may be marked as zip-safe and

invoked without the need to write to disk. Wheels are always marked as not-zip-safe and written

to disk prior to PEX invocation. --not-zip-safe  forces --always-write-cache  . 

--always-write-cache

Always write all packaged dependencies within the PEX to disk prior to invocation. This forces the

zip-safe bit of any dependency to be ignored. 

--inherit-path

By default, PEX environments are completely scrubbed empty of any packages installed on the

global site path. Setting --inherit-path  allows packages within site-packages to be considered

as candidate distributions to be included for the execution of this environment. This is strongly

discouraged as it circumvents one of the biggest benefits of using .pex files, however there are

some cases where it can be advantageous (for example if a package does not package correctly an

an egg or wheel.) 

--ignore-errors

If  not all of the PEX environment’s dependencies resolve correctly (e.g.  you are overriding the

current Python interpreter with PEX_PYTHON  ) this forces the PEX file to execute despite this. Can

13 intro & history



be  useful  in  certain  situations  when  particular  extensions  may  not  be  necessary  to  run  a

particular command. 

--platform

The  (abbreviated)  platform  to  build  the  PEX  for.  This  will  look  for  wheels  for  the  particular

platform. 

The abbreviated platform is described by a string of the form PLATFORM-IMPL-PYVER-ABI  , where

PLATFORM  is  the  platform  (e.g.  linux-x86_64  ,  macosx-10.4-x86_64  ),  IMPL  is  the  python

implementation  abbreviation  (  cp  or  pp  ),  PYVER  is  either  a  two  or  more  digit  string

representing the python version (e.g., 36  or 310  ) or else a component dotted version string (e.g.,

3.6  or  3.10.1  )  and  ABI  is the ABI tag (e.g.,  cp36m  ,  cp27mu  ,  abi3  ,  none  ).  A complete

example: linux_x86_64-cp-36-cp36m  . 

Constraints : when --platform  is used the environment marker python_full_version  will not be

available if PYVER  is not given as a three component dotted version since python_full_version

is  meant  to  have  3  digits  (e.g.,  3.8.10  ).  If  a  python_full_version  environment  marker  is

encountered during a resolve, an UndefinedEnvironmentName  exception will be raised. To remedy

this, either specify the full version in the platform (e.g,  linux_x86_64-cp-3.8.10-cp38  ) or use

--complete-platform  instead. 

--complete-platform

The completely specified platform to build the PEX for. This will look for wheels for the particular

platform. 

The complete platform can be either a path to a file containing JSON data or else a JSON object

literal. In either case, the JSON object is expected to have two fields with any other fields ignored.

The marker_environment  field should have an object value with string field values corresponding

to PEP-508 marker environment entries. It is OK to only have a subset of valid marker environment

fields but it is not valid to present entries not defined in PEP-508. The  compatible_tags  field

should have an array of strings value containing the compatible tags in order from most specific

first to least specific last as defined in PEP-425 . Pex can create complete platform JSON for you by

running it on the target platform like so: pex3 interpreter inspect --markers --tags  . For more

options,  particularly  to  select  the  desired  target  interpreter  see:

pex3 interpreter inspect --help  . 

Tailoring PEX execution at runtime 

Tailoring of PEX execution can be done at runtime by setting various environment variables. See

PEX runtime environment variables . 

14 intro & history

https://www.python.org/dev/peps/pep-0508/#environment-markers
https://www.python.org/dev/peps/pep-0508/#environment-markers
https://www.python.org/dev/peps/pep-0425


Using bdist_pex

pex provides a convenience command for  use in setuptools.  python setup.py bdist_pex  is  a

simple way to build executables for Python projects that adhere to standard naming conventions. 

bdist_pex

The default behavior of bdist_pex  is to build an executable using the console script of the same

name as the package. For example, pip has three entry points: pip  , pip2  and pip2.7  if you’re

using Python 2.7. Since there exists an entry point named pip  in the console_scripts  section of

the entry points, that entry point is chosen and an executable pex is produced. The pex file will

have the version number appended, e.g. pip-7.2.0.pex  . 

If no console scripts are provided, or the only console scripts available do not bear the same

name as the package, then an environment pex will be produced. An environment pex is a pex file

that drops you into an interpreter with all necessary dependencies but stops short of invoking a

specific module or function. 

bdist_pex --bdist-all

If  you would  like  to  build  all  the  console  scripts  defined in  the  package instead of  just  the

namesake script,  --bdist-all  will write all defined entry_points but omit version numbers and

the  .pex  suffix.  This  can  be  useful  if  you  would  like  to  virtually  install  a  Python  package

somewhere on your $PATH  without doing something scary like sudo pip install  : 

$ git clone https://github.com/sphinx-doc/sphinx && cd sphinx
$ python setup.py bist_pex --bdist-all --bdist-dir=$HOME/bin
running bdist_pex
Writing sphinx-apidoc to /Users/wickman/bin/sphinx-apidoc
Writing sphinx-build to /Users/wickman/bin/sphinx-build
Writing sphinx-quickstart to /Users/wickman/bin/sphinx-quickstart
Writing sphinx-autogen to /Users/wickman/bin/sphinx-autogen
$ sphinx-apidoc --help | head -1
Usage: sphinx-apidoc [options] -o <output_path> <module_path> 
[exclude_path, ...]

Using Pants 

The Pants build system can build pex files. See here for details. 

15 intro & history

http://www.pantsbuild.org


PEX Recipes and Notes 

Uvicorn and other customizable application servers 

Often you want to run a third-party application server and have it use your code. You can always

do this by writing a shim bit of python code that starts the application server configured to use

your  code.  It  may  be  simpler  though  to  use  --inject-env  and  --inject-args  to  seal  this

configuration into a PEX file without needing to write a shim. 

For example, to package up a uvicorn-powered server of your app coroutine in example.py  that

ran on port 8888 by default you could: 

$ pex "uvicorn[standard]" -c uvicorn --inject-args 'example:app --
port 8888' -oexample-app.pex
$ ./example-app.pex
INFO: Started server process [2014]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8888 (Press CTRL+C to
quit)
^CINFO: Shutting down
INFO: Finished server process [2014]

You could then over-ride the port with: 

$ ./example-app.pex --port 0
INFO: Started server process [2248]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:45751 (Press CTRL+C to
quit)

Long running PEX applications and daemons 

If  your  PEXed application will  run a  long time,  at  some point  you’ll  likely  need to  debug or

otherwise inspect it using operating system tools. Unless you built your application as a non-

--venv --layout loose  PEX, its final process information will be inscrutable in ps  output since

all  other  PEX  forms  re-execute  themselves  against  an  installed  version  of  themselves  in  the

configured PEX_ROOT  . 

16 intro & history



You’ll see something like this as a result: 

$ ./my.pex --foo bar &
$ ps -o command | grep pex
/home/jsirois/.pyenv/versions/3.10.2/bin/python3.10 /home/
jsirois/.pex/unzipped_pexes/94790b07dc3768a9926dab999b41a87e399e0aa9
--foo bar

The original PEX file is not mentioned anywhere in the ps  output. Worse, if you have many PEX

processes it will be unclear which process corresponds to which PEX. 

To remedy this, simply add setproctitle as a dependency for your PEX. The PEX runtime will then

detect the presence of setproctitle  and alter the process title so you see both the Python being

used to run your PEX and the PEX file being run: 

$ ./my.pex --foo bar &
$ ps -o command | grep pex
/home/jsirois/.pyenv/versions/3.10.2/bin/python3.10 /home/jsirois/
dev/pex-tool/pex/my.pex --foo bar

PEX app in a container 

If you want to use a PEX application in a container, you can get the smallest container footprint

and the lowest latency application start-up by installing it with the venv  Pex tool. First make sure

you build the pex with --include-tools  (or --venv  ), and then install it in the container like so: 

FROM python:3.10-slim as deps
COPY /my-app.pex /
RUN PEX_TOOLS=1 /usr/local/bin/python3.10 /my-app.pex venv --
scope=deps --compile /my-app

FROM python:3.10-slim as srcs
COPY /my-app.pex /
RUN PEX_TOOLS=1 /usr/local/bin/python3.10 /my-app.pex venv --
scope=srcs --compile /my-app

FROM python:3.10-slim
COPY --from=deps /my-app /my-app
COPY --from=srcs /my-app /my-app
ENTRYPOINT ["/my-app/pex"]

Here, the first two FROM  images are illustrative. The only requirement is they need to contain the

Python interpreter your app should be run with ( 
/usr/local/bin/

python3.10  in this example). 

17 intro & history

https://pypi.org/project/setproctitle/


The Pex venv  tool will: 

Install the PEX as a traditional venv at 
/my-

app  with a script at 
/my-app/

pex  that runs just like

the original PEX. 

Pre-compile all PEX Python code installed in the venv. 

Notably,  the PEX venv install  is  done using a  multi-stage build  to ensure only the final  venv

remains on disk and it uses two layers to ensure changes to application code do not lead to re-

builds of lower layers. This accommodates the common case of modifying and re-deploying first

party code more often than third party dependencies. 

PEX-aware application 

If your code benefits from knowing whether it is running from within a PEX or not, you can inspect

the  PEX  environment variable. If it is set, it will be the absolute path of the PEX your code is

running in. Normally this will be a PEX zip file, but it could be a directory path if the PEX was built

with a --layout  of packed  or loose  . 

Gunicorn and PEX 

Normally, to run a wsgi-compatible application with Gunicorn, you’d just point Gunicorn at your

application, tell Gunicorn how to run it, and you’re ready to go - but if your application is shipping

as a PEX file, you’ll have to bundle Gunicorn as a dependency and set Gunicorn as your entry

point. Gunicorn can’t enter a PEX file to retrieve the wsgi instance, but that doesn’t prevent the

PEX from invoking Gunicorn. 

This retains the benefit of zero pip install ’s to run your service, but it requires a bit more setup as

you must ensure Gunicorn is packaged as a dependency. The following snippets assume Flask as

the wsgi framework, Django setup should be similar: 

$ pex flask gunicorn myapp -c gunicorn -o ~/service.pex

Once your pex file is created, you need to make sure to pass your wsgi app instance name to the

CLI at runtime for Gunicorn to know how to hook into it, configuration can be passed in the same

way: 

$ service.pex myapp:appinstance -c /path/to/gunicorn_config.py

And there you have it, a fully portable python web service. 

1. 

2. 

18 intro & history

https://docs.docker.com/develop/develop-images/multistage-build/


PEX and Proxy settings 

While building pex files, you may need to fetch dependencies through a proxy. The easiest way is

to use pex cli with the requests extra and environment variables. Following are the steps to do

just that: 

Install pex with requests 

$ pip install pex[requests]

Set the environment variables 

$ # Hopefully your proxy supports https! If not, you can export 
HTTP_PROXY:
$ # export HTTP_PROXY='http://user:pass@address:port'
$ export HTTPS_PROXY='https://user:pass@address:port'

Now you can test by running 

$ pex -v pex

For more information on the requests module support for proxies via environment variables, see

the  official  documentation  here:  http://docs.python-requests.org/en/master/user/advanced/

#proxies . 

PEX runtime environment variables 

PEX_ALWAYS_CACHE 

Boolean. 

    Deprecated: This env var is no longer used; all internally cached 
distributions in a PEX
    are always installed into the local Pex dependency cache.

PEX_COVERAGE 

Boolean. 

1. 

1. 

1. 

19 intro & history

http://docs.python-requests.org/en/master/user/advanced/#proxies
http://docs.python-requests.org/en/master/user/advanced/#proxies


    Enable coverage reporting for this PEX file.  This requires that 
the "coverage" module is
    available in the PEX environment.

    Default: false.

PEX_COVERAGE_FILENAME 

Filename. 

    Write the coverage data to the specified filename.  If 
PEX_COVERAGE_FILENAME is not
    specified but PEX_COVERAGE is, coverage information will be 
printed to stdout and not saved.

PEX_DISABLE_VARIABLES 

Boolean. 

    Disable reading of all PEX_* variables (except this one) from all 
sources. Both PEX_*
    environment variables and PEX_* variables sources from pexrc 
files will be ignored.

    This can be used to lock down the function of a PEX.

PEX_EMIT_WARNINGS 

Boolean. 

    Emit UserWarnings to stderr. When false, warnings will only be 
logged at PEX_VERBOSE >= 1.
    When unset the build-time value of `--emit-warnings` will be 
used.

    Default: unset.

PEX_EXTRA_SYS_PATH 

String. 

    A ':' or ';' separated string containing paths to add to the 
runtime sys.path.

    Should be used sparingly, e.g., if you know that code inside this 

20 intro & history



PEX needs to
    interact with code outside it.

    For example, on a Unix system: "/path/to/lib1:/path/to/lib2"

    This is distinct from PEX_INHERIT_PATH, which controls how the 
interpreter's
    existing sys.path (which you may not have control over) is 
scrubbed.

    See also PEX_PATH for how to merge packages from other pexes into 
the current environment.

PEX_FORCE_LOCAL 

Boolean. 

    Deprecated: This env var is no longer used since user code is now 
always unzipped before
    execution.

PEX_IGNORE_ERRORS 

Boolean. 

    Ignore any errors resolving dependencies when invoking the PEX 
file. This can be useful if
    you know that a particular failing dependency is not necessary to 
run the application.

    Default: false.

PEX_IGNORE_RCFILES 

Boolean. 

    Explicitly disable the reading/parsing of pexrc files (~/.pexrc).

    Default: false.

PEX_INHERIT_PATH 

String (false|prefer|fallback) 

    Allow inheriting packages from site-packages, user site-packages 
and the PYTHONPATH. By

21 intro & history



    default, PEX scrubs any non stdlib packages from sys.path prior 
to invoking the application.
    Using 'prefer' causes PEX to shift any non-stdlib packages before 
the pex environment on
    sys.path and using 'fallback' shifts them after instead.

    Using this option is generally not advised, but can help in 
situations when certain
    dependencies do not conform to standard packaging practices and 
thus cannot be bundled into
    PEX files.

    See also PEX_EXTRA_SYS_PATH for how to *add* to the sys.path.

    Default: false.

PEX_INTERPRETER 

Boolean. 

    Drop into a REPL instead of invoking the predefined entry point 
of this PEX. This can be
    useful for inspecting the PEX environment interactively.  It can 
also be used to treat the PEX
    file as an interpreter in order to execute other scripts in the 
context of the PEX file, e.g.
    "PEX_INTERPRETER=1 ./app.pex my_script.py".  Equivalent to 
setting PEX_MODULE to empty.

    Default: false.

PEX_INTERPRETER_HISTORY 

Boolean. 

    IF PEX_INTERPRETER is true, use a command history file for REPL 
user convenience.
    The location of the history file is determined by 
PEX_INTERPRETER_HISTORY_FILE.

    Default: false.

PEX_INTERPRETER_HISTORY_FILE 

File. 

    IF PEX_INTERPRETER_HISTORY is true, use this history file.
    The default is the standard Python interpreter history location.

22 intro & history



    Default: ~/.python_history.

PEX_MAX_INSTALL_JOBS 

Integer. 

    The maximum number of parallel jobs to use when installing third 
party dependencies
    contained in a PEX during its first boot. Values are interpreted 
as follows:

    * ``>=2`` Dependencies should be installed in parallel using 
exactly this maximum number of
      jobs.
    * ``1`` Dependencies should be installed in serial.
    * ``0`` The maximum number of parallel jobs should be auto-
selected taking the number of
      cores into account.
    * ``-1`` The maximum number of parallel jobs should be auto-
selected taking both the
      characteristics of the third party dependencies contained in 
the PEX and the number of
      cores into account. The third party dependency heuristics are 
intended to yield good
      install performance, but are opaque and may change across PEX 
releases if better
      heuristics are discovered.
    * ``<=-2`` These are illegal values; an error is raised.

    Default: 1

PEX_MODULE 

String. 

    Override the entry point into the PEX file.  Can either be a 
module, e.g.
    'SimpleHTTPServer', or a specific entry point in module:symbol 
form, e.g.  "myapp.bin:main".

PEX_PATH 

A set of one or more PEX files. 

    Merge the packages from other PEX files into the current 
environment.  This allows you to
    do things such as create a PEX file containing the "coverage" 

23 intro & history



module or create PEX files
    containing plugin entry points to be consumed by a main 
application.  Paths should be
    specified in the same manner as $PATH. For example, on a Unix 
system
    PEX_PATH=/path/to/pex1.pex:/path/to/pex2.pex and so forth.

    See also PEX_EXTRA_SYS_PATH for how to add arbitrary entries to 
the sys.path.

PEX_PROFILE 

Boolean. 

    Enable application profiling.  If specified and 
PEX_PROFILE_FILENAME is not specified, PEX
    will print profiling information to stdout.

PEX_PROFILE_FILENAME 

Filename. 

    Profile the application and dump a profile into the specified 
filename in the standard
    "profile" module format.

PEX_PROFILE_SORT 

String. 

    Toggle the profile sorting algorithm used to print out profile 
columns.

    Default: 'cumulative'.

PEX_PYTHON 

String. 

    Override the Python interpreter used to invoke this PEX.  Can be 
either an absolute path to
    an interpreter or a base name e.g.  "python3.3".  If a base name 
is provided, the $PATH will
    be searched for an appropriate match.

24 intro & history



PEX_PYTHON_PATH 

String. 

    A ':' or ';' separated string containing paths of blessed Python 
interpreters for
    overriding the Python interpreter used to invoke this PEX. Can be 
absolute paths to
    interpreters or standard $PATH style directory entries that are 
searched for child files
    that are python binaries.

    For example, on a Unix system: "/path/to/python27:/path/to/
python36-distribution/bin"

PEX_ROOT 

Directory. 

    The directory location for PEX to cache any dependencies and 
code.  PEX must write not-zip-
    safe eggs and all wheels to disk in order to activate them.

    Default: ~/.pex

PEX_SCRIPT 

String. 

    The script name within the PEX environment to execute.  This must 
either be an entry point
    as defined in a distribution's console_scripts, or a script as 
defined in a distribution's
    scripts section.  While Python supports any script including 
shell scripts, PEX only
    supports invocation of Python scripts in this fashion.

PEX_TEARDOWN_VERBOSE 

Boolean. 

    Enable verbosity for when the interpreter shuts down.  This is 
mostly only useful for
    debugging PEX itself.

    Default: false.

25 intro & history



PEX_TOOLS 

Boolean. 

    Run the PEX tools.

    Default: false.

PEX_UNZIP 

Boolean. 

    Deprecated: This env var is no longer used since unzipping PEX 
zip files before execution
    is now the default.

PEX_VENV 

Boolean. 

    Force this PEX to create a venv under $PEX_ROOT and re-execute 
from there.  If the pex file
    will be run multiple times under a stable $PEX_ROOT the venv 
creation will only be performed
    once and subsequent runs will enjoy lower startup latency.

    Default: false.

PEX_VENV_BIN_PATH 

String (false|prepend|append). 

    When running in PEX_VENV mode, optionally add the scripts and 
console scripts of
    distributions in the PEX file to the $PATH.

    Default: false.

PEX_VERBOSE 

Integer. 

    Set the verbosity level of PEX debug logging.  The higher the 
number, the more logging, with
    0 being disabled.  This environment variable can be extremely 

26 intro & history



useful in debugging PEX
    environment issues.

    Default: 0

27 intro & history



© Copyright 2024, Pex project contributors. 

Created using Sphinx 7.2.6. 

http://sphinx-doc.org/

	pex
	Table of Contents

	pex
	in brief
	intro & history
	What are .pex files?
	tl;dr
	Why .pex files?
	How do .pex files work?

	Building .pex files
	Invoking the  pex  utility
	Specifying requirements
	Specifying entry points
	pex <options> – script.py
	pex -m
	pex -c

	Saving .pex files
	Tailoring requirement resolution
	Tailoring PEX execution at build time
	--zip-safe  /  --not-zip-safe
	--always-write-cache
	--inherit-path
	--ignore-errors
	--platform
	--complete-platform

	Tailoring PEX execution at runtime

	Using  bdist_pex
	bdist_pex
	bdist_pex --bdist-all

	Using Pants
	PEX Recipes and Notes
	Uvicorn and other customizable application servers
	Long running PEX applications and daemons
	PEX app in a container
	PEX-aware application
	Gunicorn and PEX
	PEX and Proxy settings

	PEX runtime environment variables



